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ABSTRACT

Flux-profile relations are presented for wind and temperature in the

sufface layer of the unstable atmospheric boundary layer. The flux—-profile
relation for wind is derived from the so-called 'KEYPS' equation, a quartic
equation whose real, positive root is equal to the nondimensional wind shear.
The analogous relation for potential.temperature is a new cubic equation whose
real, positive root is equal to the nondimensional temperature gradient
(Helfand, 1984)., It is assumed that the nondimensional humidity gradient is

equal to that for temperature.

The nondimensional gradients reduce to conventional empirical relations
for conditions of weak instability but, unlike the conventional relations, go

to ffj the 'free-convection' limit for conditions of strong instability.

The integrate& forms of the flux—profile relations yield expressions which
can be solved iteratively:fpr the-Obukhov‘length which, in turn, can be used to
compute surface momeﬁtum, heat,’and moisture fluxes. Although the flux—profile
relations and their“integrated forms have no evident closed-form solutions,
rational fraction and asymptotié‘approximatioﬁs arevderived that are no more
costly computationally than the exﬁreésions curreptly in use in numerical

prediction models that use conventional flux-profile relatioms.



I. Introduction

Perhaps the most important practical problems in boundary layer meteorology
are the determination of the turbulent fluxes of momentum, heat, and moisture
and also the determination of the profiles of wind, temperature, and specific

humidity near the earth's surface.

The similarity theory of Obukhov (1946) and Monin and Obukhov (1953, 1954)
is the éenterpiece of all suéh flux and profile considerations. Obukhov
similafity theory shows that turbulent fluxes in the atmospheric surface layer
can be uniquely determined from measurements of roughness length ('20 ), ground
temperature and humidity ( 9(,)<bo), and temperature, wind speed, and humidity
at an additional level %—‘-’-‘ﬂ}«) %o - Tﬁe nondimensional bulk Richardson number Rg
(= gh A@/é U’z) determines the scaled height h/L (L = Obukhov length) from
which surface fluxes may be computed (g = acceleration due to gravity; é'=
reference potential temperafure).v This result is of considerable imﬁortance in
numerical prediction models that ﬁse a balance of solar, long wave, sensible,

latent, and soil heat fluxes to predict or diagnose surface temperature and

“humidity.

Obukhov similarity theory postulates the existence of universal functions

(QWland ﬁQh such that the nondimensional wind and temperature shears are

given by : . |
%é %% - CQ""‘LZ/L) " (1.12)
and L o .
| 1%%* % ;C?“(%lg | (1.1b)



in which k is the von Karman constant and b is the neutral Prandtl number. A

similar expression exists for humidity,

Rz Q‘%‘ = (&6 (Z/L), | (1.1¢)

C;c6§& P E
(See the appendix for a definition of the symbols used in this report.)

Although not required by Obukhov similarity theory, it is usually assumed that

?%Z ?h and ¢ = b,

No complete theory exists that predict;_s CQMG-L/ L) and Ceh(E/L) over
the entire stable and unstable range. Moreover, experimental data are still
lacking in sufficient precision to specify interpolation formulae for qzvfi
and qe»1 without equivocation. Accordingly, semi-empirical functions abound.
Dyer (1974) and Yaglom (1977) have surveyed many such relations for stable and
unstable cases. The relations for unstable caées that have probably enjoyed the

greatest popularity in numerical models are those of Businger gg;gi, (1971),

g, (/)= (=15 2y

(1.2a)
. v
‘?h (=/v)= (1 'O\%M) © &= 0,35 .25
and Dyer and Hicks (1970),
’ ; -V,
CQ%L%IL): S LETAN A s

(1.3b)

G @/y= Q-1ez) s ko



The integrated forms of (1.2,3), valid for -2 / L >,O, [see (3.5)] can be
expressed in closed-form, although the results are somewhat complicated. It is
probably the closed-form nature of the integrated expressions that accounts for

their popularity among numerical modelers.

None of these expressions, however, has the correct’ 'free—convective'
asymptotlc form for -—%[ L_-—>C>O s ‘f.irqt oredicted by Prandtl (1932) and later
by Obukhov (1946), Priestly (1954), and Kazansky and Monin (1958). As the
free—convection limit is approached the surface heat flux becomes 1ncrea51nglv
’ 1ndependent of U and oltlmately becomes ofoportlonal to A 6 /7‘ . There are
two ways by which the 11m1t .may be; _approaohed: elvt':her by increasing z or by

decreasing uy to ux —> 0.

For the free—convection limit to hold, dimensional analysis shows that @V /32

and 'AQ/SEmust have the limiting form

. _\ll . -\
W o 3 . 3
5—‘% ‘ J CQ/m, MQ%/L) (1.4a)
20 L &
— N T ¢ Nt%/\__) 3 (1.4b)
22 )
(see, e.g., Monin and Yaglom, 1971 and Lumley and Panofsky, 1964), which
apoarently conflicts with (1.2,3) for which
S/ ( ‘-y'-l -
q .
RV Loz o T i “%/L) (1.52)
2% s Lo |
) \
20 ., 2% e (1.5b)
- o~ (-7 ’
% 9 Y ( / ) . |



The nature of this discrepancy has not been resolved., If the free-convection
results are valid, then it may be that the sparseness of data points for -?ﬁ/ L
greater than %% Q. (see Businger, et al., 1971) is the source of the
difficulty. Indeed, Carl et-al. (1973) argue that a composite of tower data
suggests that

: | -
g, (/0= (1= wew/L)

(1.6)

for =%&/L.2%0 . Eq. (1.6) obviously reduces to the free-convection limit

(-BJLY 3 as —z/L >,

The so-called KEYPS profile is an interpolation formula for (P?“. 'KEYPS'
is constructed from the initials of the Western researchers who independently

devised the profile after Obukhov (1946) first proposed it. The KEYPS profile

is computed from the solution of the following defining quartic relation,

| , 3
(Qm JXWL:Z:/L (Qm ’—\ =0 (1.7a)

in which iﬁ;n is a cqﬁstant. Recently, Helfand (1984) has proposed a cubic

equation to supplement (1.7;)
T - 3 " |
L -, Z CQ.\\——\ =0 (1.7b)

to account for the universal temperature profile.

. Our purpose in this report is mnot to attempt to show that (1.7) represent
observational data with greater fidelity than the Businger or Dyer profiles. We

shall be content, however, to show that: (a), (1.7) reduce to the Businger-Dyer



‘ ‘. relationships for mild instability and the free-convection limit for strong in-
stability (—%/L >1); and (b), although the defining"quartic and cubic relations
. appear to be computationally _imp’ractical, they can be utilized in numerical.

models at least as efficiently as the Businger—Dyer relations.

"'Fo‘r_ the remainder of this report, ’Wé shall refer to the KEYPS and Helfand

N

 relations collectively as the GUST (= General Unified Similarity Theory) relations.

2. Solutions to the flux-profile relations

In this section, we will show that the GUST relations tend toward the Businger-
Dyer relations for small values of —;Z/Land the free-convection relations for
large values of—-E/L. We will then present simple methods for computing

CQY“ - and CV\,\. for the entire unstable regimeos-—z/]_{w.

‘ As a primary requirement, we must determine if each of the GUST relations,

CQL\ —— ’(W-%/L CQ:\ —\ =0 | ‘ (2;15“)

oA,
, N . CQ% |
Qh——\(h%/L W —1=0 o | (2.1b)
rewrit‘ten more conveniently with ﬂz:‘__‘( 2/'1_ ’

(Z.Za)

-Cei;, +/Q-MCQ:“ *t?b
% E (2.2b)
CQ * 02 -

has one, and no more than one, positive (physical) root for each value of

._. o 42 »0 . Descartes' 'rule of signs' (Korn and Korn, 1965) states the number of



pogsitive roots of a polynomial cannot exceed the number of sign changes of the
polynomial's coefficients. Since the GUST relations have only one sign change,
there can be no more than one positive root for each equation. We shall show

how the roots can be computed efficiently later in this section.

To show that the GUST relations reduce to the standard flux—-profile rela-

tions for small values of_dz , we recast (2.2) into the forms

CQWL = Q +”{_m / CQY“)#\{‘ | | (2.32)

CQ“ k ! "R

-

L

(2.3b)

L2N

For the case of weak CODVECtiOH,/Y —> ¢ and (Ql. —s>|: therefore, for weak
: h
instability,

S N ,)
CQM ~ Q+ /VLM\) ’ . (2.4a)
S (\ x %,,) - o (2.4b)

The exponents —1/2 and -1/4 agree with most of the semi-empirical flux-profile
relations. We note, however, that series expansions of the GUST profile
felations agree with conventional profiles only to orders 0(l) and 0(7), and

differ at 0(72) and higher. orders.

To find the limiting forms of CQWM and <?h for strong convection, we
rewrite (2.2) as

%= ()

(2.5a)



Ro= QY

(2.5b)

(hereafter, for simplicity, the subscripts on %L will be omitted). As oz._;ma,
‘the term C?m/l)z in (2.5b) vani‘shes and CQ_mr\, /}2"/5. As. rZ —>°0 , we shall
tentatively assume that fq- q? -4? ng", in which case (2.5a) asyﬁptotically
o R
becomes (eh n ’?( %, We see. that the tentatlve assumptlon nz ce —>2, is
)y,
consistent with CQ "y nL ’3 , since. /’rLCQ N/yL _,_700 . The ,1_1_m1t1ng relations
' B ¢ : ‘
. =Y . :
'qz 'f\/ITI ®are sometimes referred to as 'strict' free—convection scaling.
(Tennekes,fl973; Zilitinkevitch, 1970).
In addition to their yie_lding uas‘y'iﬁp'tc"it_ic' lfrelati()ns for?QOandﬂz—?Q", (2.3)
and (2.5) lead to efficient ‘iteration formulas fét;evaluating (Q and 43, s

that is,

iy . @) /Li ‘
CQ it - ( TN / Q ) ‘ ' (2.6a)
(340 o i R | |
" (1o ® ) o0
and ' . | » . : k \
Gey Y ( ’ &) -
= )+ CQ /! )
CQ{M /7' M/[Q : (2.7a)
(e k5+1) " ' _y | .
,‘2 Q\ ’”/AZ (Q(J)) ’ (2.70)
where (j) and (3+1) denote the j and J+]. iterates, beglnnlng with <€ i 1.

Computatlonal experlments indicate that (2. 6) converge more quickly than (2. 7)



for ”ZSI and £hat (2.7) convefgé'more quickly than (2.6) for /? >| « For a
fractional error of 1d‘3, no mb_re than five iterations are réqui'red; for a
fracfional kérror b,f 1078, féWer, than a dozen ‘iterations suffice. Values of (Q,m
cgmputed from the it»eravtiovﬁ‘krél'ations are presenfed in Table 1. |

: An alternative method for generating a table of CQW\ hcoﬁsisﬁs o‘f converting
- the quaritic and' cubic algebraic GUST equations into 'ordislary differential
equations., Diffefentiating”the ‘ciuartic equation for‘ (Q'm yields |

Table 1. The nond imensional unlversal functions C? and CQ
as a function of .

m. R v @\,
0.001 0.99975 0.99950
0.005 0.99875 0.99752
0.01 0.99751 . 0.99506
0.05 0.98773 0.97645
0.10 0.97591 0.95540
0.50 0.89498 0.83929
1.0 0.81917 0.75488
2.5 0.68002 0.62477
5.0 - 0.56432 0.52517

10.0 0.45729 0.43310

25.0 ©0.34046 0.32917

50.0: 0. 27095 * 0.26494

100.0 0. 21529} 0.21216
500.0 0. 1259Sf 0.12533
1000.0 =0, 099997 0.099667
5000.0 . 0.058480 0.058414

3 ,:5; o 'iﬁA_qZ o L
(Li o +27 ch‘) "+ R =0 (2.8)

- . ’ u;v e &_ql o o e |

with-ce"m( o) = 1. This procedure converts the quartic algebraic equation into

an initial value problem that can be 'marched’ fr(')‘m" ﬂL:O to the largest
desired value of N’L . In practice, nl-/,:,xgr‘epresent”s a reasonable upper limit.

Beyond hZ::)— s simple asymptotic algebraic formulas work quite well,



. Unlike the Businger or Dyer flux—-profile laws, (2.7) and (2.8) suggest that
there are no closed-form solutions for Q Lo Rational functions, howéver,
) o,
can be used to approximate <€ ‘effectively. Given the function y(x), the

m, h
rational fun’ctllon YL).M (r)(,) , defined by

\( (M).._, a—b +a‘l/)(’ +a‘1\/¢/2. +k'at O"L /}LL
LM - ' ) ‘ N : ' -
- I Y O N 2 PO S (2.9)
| : M

can be used to collocate with -j) = 5—1(!‘{/\] Yat j =1, 2, v N=L +M+ 1
values of r)&\\ and Y ; , since there are L + M + 1 undetermined coefficients

in the numerator and denominator_ of (2.9)., The -substitution of N values of
(’JLDLJ'J) into (2.9) legds to a N x N system of equations in which {mo R0, e

: is’ the: solution vector. In order to approximate ‘
‘ O"F""’sz)"'hms ‘ . PP (QMJH(OZ)

’

J
{’.,0) ‘0.0\} 0. ‘) 0.5; \.0)2.5')-.5.‘3} The choice of seven points allows a cubic polynomial

in the range 04 rrl& 5 I, it is _sufficient to choose the seven collocation points i
in both the numerator and the denominator of (2.9). Solving the 7 x 7 systems

leads: to

<€mg I+ 0.045709536M +0.121135 65 M* + 5.0127995 57 M3
|+ D.345TTHbL%T 'YL +0,113135 29 nL'Z_ +0,0420955 | ¢ ,)13 (2.10a)

and

th i-%-'l.\BOQE’L\'YL +0.0‘01q!%0|‘! l"fl:"‘ +0-0L100%3'2_'3‘1 nl;?’
' 14(.-1,@%0,%%0& + 0, | 1‘3135 Q"q%”"'z’l'l' 0.162%2657 @3 (2.10b)

Table 2 shows the values computed frbm”(Z.lO)'cvbmparve'd to t‘he_‘.exact values
v . computed from the interation formulas. The interpolation error is relatively

small and 1s of no practical significance.

i



/ .

For wvalues of fYL greater than ,’\\; 5.0, Simple three-term asymptotic

expressions can be invoked to approximate A "+ As ‘was shown in the
di ion following (2.5),% Y L o . Thet I
iscussion followin . n as O . e term is the
& > Nmyh /)Z /}2 e Oz : .
leading term of asymptotic expressions for ‘Qm hoe Additional terms can be
‘ )N

calculated from the iterative expresy‘sions for CQW\ £ Writing (2.5) again,
o ) ’)

we have
R ‘ ;\,5 | | |
M+ R /) O @usa)

Cehf— rT%Q"‘" \/"LQQ’ /3’ -  (2.5b)

\
. ' -/ : .
Beginning with (2.5a), we use ({ N/'}Z as the leading term in the asymptotic

expansion for CQm . That is,

©) -y
. — 2
CQ/“\ rfl (2.11)

From (2.5a), we have

R ’7?’ ® (U v ‘? /~Z> 3 __/frli\fa[‘__%_@m/? +%"@"“/ﬂz>l+”1 @)

(o)

\—,‘

1nto.the first two .terms 'of (2.12) gives Q ,
SR "

”,Y ( CQ()/”L\ ”l/?’( -’H/?)» | @23

B

Substi tutlng <Q

’ Slmllarly, substltutlng ? ) into the first three terms of (2 12) and retaining

terms of order no hlgher than '72‘ ;> we have



(2.14a)
or

(3) - | - “
LT aUTE N et sgeq . e

Table 2. Comparison of the exact values of CQ'm and (?h with the approximate
values computed from Eqs. (2.10).

‘Q.xa.(','b - E%» (,1"60*) Lﬁ&(’.'t‘ CQ E?), Klu‘0b>
rrL CQ Yo Ce’m CQ\'\ n

0.001 0.99975 0.99975 0.99950 0.99950

0.05 ' 0.98773 0.98773 0.97645 0.97648

0.25 ' 0.94290 0.94290 0.90321 0.90331

. 2.0 0.71667 0.71673 0.65730 0.65738
A 3.0 0.64951 0.64941 0.59819 0.59822
Q 4.0 0.60123 0.60100 0.55669 0.55668

Table 3, below, compares (2.14) with the exact values of @ .
m

Table 3. Comparison of the exact values of CQ,M with the
approximate values computed from Eq. (2.14)

, - L ¥act ' . (35

0 1.0 e
2 0.71667 0.73037
5 0.56433 0.56467
10 0.45729 0.45731
25 0.34046 0.34046
50 : y 0.27095 0.27095

)

As can be seen, CQW works sufficiently well for 027/5' that we can, for
. ' £ e s @) . o ,
practical purposes, replace . eXact with its C(’\ - asymptotic approximation.

. A similar computation can be carried out for C?h . The results are,



_ | -1 -2

CoE D@4y rER) +...] e
= - % - - -
T g™ v ™ « 0] e
@)
= \— 1L g% L gt 17
da W 73<s > .+ 3 f) ) . (2.17)
Table 4 compares (2.175 with the exact values of qi\.

Table 4. Comparison of the exact values of ﬁﬁm with the
approximate values computed from Eq. (2.27)

axact : ()
(Q h . ?’n

0 1.0000 O

2 0.65730 0.66203
5 0.52517 0.52574
10 0.43311 | 0.43322
25 0.32917 - 0.32918
50 0.26494 0.26494

-

] . :
Since the terms for <¥Lngo as \) %q) % » ses , While the terms for Cﬂ} go as
b %zj ZL‘ , ese 5 the q%m function approaches the free—convective 1limit

more quickly than the (?h' function,

3. Integrated forms of the flux-profile relations

Integration of the flux-profile relations yields profiles of wind and
potential temperature. It is convenient and also standard practice to integrate’
between the roughness height %o and an arbitrary height 1=>h>7£=,using the

dummy variable §[(= #/LJ,

V()= Y= g 12 CLED S
-

§
A — *é— E’CPM (gp (3.1a)

5 €'



+.in which Rg is the bulk Richardson nﬁmbef_(:

8(2) -6(z.y= bo. (S S
( ) @(7:0)_ 59* , (L@'c? (g) | (3.1b)
4
. U5 8 |
The roughness height is conventionally taken as the air-ground interface level
at which aksurface energy balance is computed ina numerical prediction model.
The possible dietinctign between the momentum roughness height and the heat

-(and vapor) roughness height is usually ignored by numerical modelers (see

Brutsaert,‘ 1982, however, for a congemtly, argmed opposing view).

The wind speed and potential'temperatmre at a giveﬁ height zﬁ;h can be
calculated from U—;/:; 8’* » L , ‘ZQ ,@‘(Zo), and the integrated flux—profile
relations. It is the invefse’problem, hqwever,‘tﬁat is ueually ofbgreater
interest to numerical mecielers. Given U(h)) A e=9(h)~9(i,,).~,‘ and %, ,
the inﬁefse ptbblem is to determine L from which Ux and 9% can be calculated.
The surface momentum and heat fluxes . follow from —-‘p LL*. and—{oc e Bln Whlch,

P is the den51ty of alr and C ‘1s the spec1f1c heat of air at constant

§

pressure,
The Obmkhov lemgth may'beecompmted.ty fitst'nettmétthetteinee.
Sihe e ‘; ~ (3.2)
.then
Fi_ - g (3.3)

'\n € ), and F and F}, are the

U&

3
5

integrated flux-profile relations,



Fm:FwLCbC5EL3>?§§ é__g_/ C€ Lg’) (3,4a)

_ a9 5 ' , (3.4b)
R B(Esz)= (T ddq (9),

Solving for % = h/L = RB F'V;‘ /E ): requires iteration since sz/F\{‘;is a non-—
n

linear function of § .

The functions F, and Fp, can be somewhat complicated. For example, the
0 -
4 2%
Businger relations = (\ - ~ L - ield (Long and Shaffer
L =0-158) "5 Q-39 v g ;

1975),

an QR ))(R +\) —\—‘an—‘Rw\—f&n_iRc
m &K‘n H)(K . . (3.5a)

(Q AT V) 3.5b
5= /QMK(@W)(Q ) '_ o

) \ Y \/L ‘1..-
in which R\n = Q" \5 ‘-S)/Lt) R°= Q‘-l5 %o) L‘) Q\,, :(\—Q%) ) QQ:O"(\&,)/.

For the GUST relations, no known closed-form expressions for F, and Fy exist.
In what follows, however, we shall show how Fy and F{, can be approximated

rather closely by simple expressions that are similar in form to those derived

for C?ﬂmvand CQh .

Although there are no apparent analytical expressions relating g to Fy
and Fy, there are closed-form expressions relating Fy and Fy to (em and C?h .
To derive them, we begin by writing Fp and Fp in what has become standard form;

that is,



P56 e
Bl (B)-N (58 e

in 'Whic‘:h : -
= - : \ w— I
wT ) '(Q”;“ (s) o
<
and L % _
¢
= ‘ \ "‘ /
Y= (Tde %
o S X . Gy
The expressions involving \Vw\ |n preserve the logarithnlié forms of the

profile laws that are obscured by (3.4). Since for conditions close to neutral-

ity the profile laws reduce to t‘hei log—laws,

Jh) = ‘féi MG\% I (3.8a)

vAei %QM(%D ,‘ | B (3.8b)

we may regard as correction terms to the logarithmic profile laws that

~account for diabatic conditions. For. near-neutral conditionms, ‘\’ h_a 0-
. - w
J .

To compute l\\) as a function of Q k we differentiate (\)  with
M, h ) : ™ h ’ - mlh

2
respect to ')Z R



® ‘ ﬁi‘-h - \;,ag}h, | e
ST T

in which the m’ in the denominator may be eliminated by invoking the defining

GUST relations [(.2,2).-1‘; Thus , for C?h -;we"_llyl‘a{r:e‘, .

, AJP'“ : d{i : . | oo
o~ 1+th

From (2.2) we also have,

0K, ...L- —

= ™ ”};:\ (.11
& 4 : c{h Ce'h
from which we get, aft‘er reducking to partial fractions,
® &Y, & o |
— = \{)h/&fYL’_ Ceh. 5 12)

TV v i g R

By numerical integration or by 'marching' methods we can create a table of»L‘)_h

as a function of. C{)h or we may simply integrate (3.12) analytically to get

) =@ ) -3 0 3, wﬂm(ﬂh |

(3.13a)
Similarly, for \\)m(cem) , we have, ‘aSSuming /}2 4( \ |
: &Y'm (-cqw\) - \‘CQ\MV"?:» /Q/V\ (Qm + Q/W(l‘\‘cqm)
- o 7. (3.13b)
‘\‘Qm H'Cej;\ 2 tant d - o
(Paulson, 1970). If we elect to use‘rational‘ -fraction ir}terpolation for
‘ 0« WL\(S‘, We can combine (3.13) with Table 1 ;o .fgrce c01‘1o¢ation at {0).0.61) 0,1)0‘5-) 10,

'l.SJVb,o}'



-This calculation yields

A 0024994850 m +0.980 818522 + 0.096758127 "LB'

| l+‘\»,losgoqs’nz+t.m‘3»\8ﬂo > + 0035316353 m3 (3.14a)
L\) o 0.H399% GHT M & 06228712 Tm>+ 0.0934 324 86 5 | 3.16%)
h~ v ¢ . :
I+ 18700807 +0.705714465%™4 0,036313720
A brief,table for a.&*) approx is given below. As with %?v approx,
. e ™ p
interpqlation errors are negligible, .
For /Z‘zhs,,we can derive a pair of relations'for W{w W similar in form
, . v
to those for <« To begin, we rewrite -as
B qavgh . \vwhh
(3.15)

_ oy
LYWJ),,(WU,-' k\)mjh(ﬁl:q.) _\.S A.’YL \"(wah(’f)
e ST TR e v
By setting a = 5 we can expect that the integrai in (3.15) will be approximated

closely by using the asymptotic "relations forﬂ? given by (2.14) and

‘ "4
(2.16). Since %a“ (5) = 0.700734, we have :

g\)nm (’)1)’5'3 a=5) 0.700754 +Im (/ro + C:; (3.16)

where

\
—/b

Tl =2m =L 40 ”[q’tDmnl 17

0 ) L L : b
and - (: is a 'constant' of "integration that depends upon a,
, , : > e » L o



Table 5. Comparison of the exact values ofkvwn)h with the
approximate values computed from Egqs. (3.14)

,)Z - \P Lxg et £¢,.(3,142) \f) exact \‘J 56,(2;,\%)
e v , \an ) h h
0.001 0.00024796 0.00024795 0.00049968 0.00049969
0.05 " 0.012384 .0.012383 0.024255 0.024257
0.25 0.059724 0.059727 0.10940 0.10940
2.0 0.37144 0.37144 0.54023 0.54022
3.0 0.49985 0.49983 0.69118 0.69120
4.0 0.60762 0.60761 0.81276 0.81284
C{L : —‘/,.,, -3 %
- - i E] T
1 O | (3.18)
Substitution leads to
K\;’ .Q.)Qa.efb 0“35 |
e=5) + = - -
o ( ) - L.eSo039

(3.19)

so that,

' s A
“m;%s} N;Q?Mz «z»aea(} 'ilé?% +£1;? %%)Nl'@y@:ﬁl‘(s.zo)

Let us compare (3.20) with the analytical expression forkE;ﬂ . For large

values of F? , the analytical result becomes

l’im %W(%)m(\~3%mm%‘:}+ﬁm@z+3§ (3.21)

n—=>*
\

-/
3
since qemq-A?‘qZ for O?J——%?cxg . The constant term*in (3.21) equals —-2.65024
@
and represents the limiting value of \%;a(a) + (: . as (. -9 , The

.
difference between (3.19) in which a = 5 and the limiting value is of no

practical significance. Comparisons between (3.20) and the exact values of

are given below.



‘Table 6. Comparison of the exact values of \Rnl with the
approximate values computed from Eq. (3.20)

: £ xect ' Eq.(3.20
5 : 0.70073 o : 0.70073
6 0.78287 0.78282
8 0.92316 0.92309
10 1.0406 1.0405
25 1.5937 1.5936
50 2.0758 , 2.0757

The computation of'qfh(ﬂlz/S) proceeds along similar lines. Using keh(5)=

0.91520 and the relations (2.16) and (3.15) , we get,

_1 g™ § |
¥, (78 % QMAZ +2>06Q Th tie D ) +\Ph (o-28) + % (22
in which,

h

axo.et a=§
o =5 =
Y (a=5) +C° 7 = 23865y (3.23)

The limiting form of the analytical expression for \\J ((Q\is
h \'\

(3.24)

i 8, () = ~GInas) vy v3q
=

Thus, Viw o : = -2,38629, This limiting value is only

o o Wh (a)+ Ch =~ (2 M2 )

slightly different from (;W=:5 . The approximation we shall use for %1
b

is, therefore,

¥, (e = Q’V\”L (g s ) - 238659 s



‘ Table 7 compares the exact values of ufh with the values given by (3.25).

Table 7. Comparison of the exact values of \\) ‘with the
approximate values computed from Eq. (3.25)

<

’ ) ‘ -é.m:t [ _(3_15)
m Y. i
5 ~ . 0.91520 0.915120
6 : ) 1.0041 1.0040
8 1.1535 1.1533
10 1.2768 1.2766
25 1.8455 1.8452
50 2.8619 . 2.8617
4, Other surface layer relationships

Drag and heat transfer coefficient methods are common and convenient
formulations for calculating momentum, heat, and moisture fluxes. By definition

of the drag (Cp) and heat transfer (Cy) coefficients, we have

momentum flux = — (3 -CTD UL (4.1a)

sensible heat flux = _—(43 C% C W U A o (4.1b)

latent heat flux = C . (4.1c)
r gﬁ 8 L AN % - ,

From the results in the previous section, it follows that

- z — s 2
Cy= Wy /L)?‘ = R (et (4.2a)
and

(4.2b)



The coefficients Cp and Cy are non-negative and vary smoothly with increasing
instability. Table 8 gives values of (:y and C:El for the Businger - GUST
relations for various values of —%2/)_ and Z/Z,. Cp and Cy are increasingly

sensitive to changes in stability for increasingly larger roughness heights.,
The values K, and Ky, the eddy diffusion coefficients for momentum and

heat, can be determined from the relations

Table 8, Drag (CDX103) and heat transfer (CHX103) coefficients as a function
' of —Z [ and % /#, for the Businger — GUST profile relations

2/ Z/z,= 5 0% ZE/2,= 5x10? 2/2,= 5 %0
-z=/L |
CD ) Ca Cp C—H . C—:p C H
0.0 3,17 4,29 1.69 2.28. 1.05 1.41
0.1 3.50 474 1.81 2,45 1.11 1.50
0.5 4.32 5.81 2.11 2.84 1.24 1.68
1.0 5,01 6.70 2.33 3.13 1.34 1.81
2.5 6.48 8.58 2,77 3.69 1.53 2.04
5.0 7.89 10.50 3.25 4,31 1.72 2.29
10.0 11.30 14 .60 3.92 5.16 1.97 " 2.61
25.0 19.30 24,40 5.26 6.87 2.41 3.18
50.0 33,40 41.10 6.89 8.91 2.88 3.79
1:00.0 1 73.70 86.20 9,49 12.10 3.53 4,61
° ;
—_ )
N = K, Y (4.3a)
o*
U B = K, % C (4.3D)

which can be rewritten as

Kw = R W &/ R, CE/L (4.4a)

(4 W = R owyez f\oﬁ% . (& Q . (4.4b)



‘ The ratiogl( &) = K“/Km"_' R . /bceh, the surface layer inverse Prandtl number, is

1.35 for near-neutral conditions for the Businger relations. As ~ % increases,
A\
M v
. increases as ~ 2.06 (-$)" for large —% . On the other hand, the
Businger - GUST relations show no such increase with -§, and o. approaches

the limiting value of 1.14 for - %-9‘30 (see Table 9). The Dyer — GUST relations

yield oL = 1.0 for near—neutral conditions and differ only slightly from unity

for all values of — &> 0O . All relations of the GUST form must havegg,—?ot_m:
YV . .

const and K*m,h ~ % for - @92 . Thus, o (§) cannot increase without

bound for -§ >>1.

Table 9. The inverse Prandtl number @ , where - o = K h/ K

for the Businger—GUST relations ( meﬁ) and the
Businger profile relations (OLB )
S B G ' ol g
. 0.0 1.35 ) 1.35
0.1 1.34 1.48
0.5 1.25 | 1.86
1.0 1.22 i 2.14
2.5 1.18 2.63-
5.0 1.17 3.10
10.0 1.16 3.68
25.0 1.15 : 4.61
50.0 1.15 5.48
100.0

1.14 " 6,52

As noted in Section 3, the 'inverse problem’ in which g is computed from

the bulk Richardson number Rgp,

R = R, Fu R

requires an iterative solution since Fpy and Fy depend nonlinearly upon % and

. %o . For near-neutral conditions; however,



ERAL I Y « o (4.6)
b \z.) - |
) For - § >>1, it is possible to derive a limiting expression for (4.5). From the

GUST relations (3.20, 24), it follows that for —§ >>1,

™ o (4.7a)
I [0\ = Qm + C
= (Zo) N b (4.7b)
in which C.,, ™~ 2. 4§ C N0 “Using —__-____\KW\' ; ‘, we see
m 9. 'Yl/m e § |

~ that F, and F become
F— n QUEN Tl : (4-5e)
E— In(yz)+ra, ) (.80)

in which
OLWUL\ :—_ C m)h -—/Q/n 2)/an 5 | (4.95

' (4.8) allow (4.5) to be approx1mated by v

Z L = 9% AD EQ/H(*L/EO)"'O“_] .
,\:eU [M(~L/£)+Uth]

or

./\B %(-L)*‘O‘»\n
| EQML\_)—\—QQ

(4.10)



I ’ Fad
in which L = LIZQ and R“B = 3 %QA e/bé U&. We see that h drops out

as a relevant parameter. FEq. (4.10) is a relatively simple nonlinear relation

A .

for which the right-side is a slowly—varying function of L. Thus, a crude
n~o~ L,

approximation is'RB]; ~ C = const. A better approximation is

%\BT_ 2 Inm CefRy) + @, ]
ox L Cof Rg) + Q)

A [&h+9¢we~%(—%&\—}

N
L= .
Re Cowm s Ime - W (- %\a\ﬂi, ENCRIY

A more accurate result over a wider range of R can be calculated from

(4.12)

‘ A
in which Y. ;J@h (:_ E‘;}and [+ )Q\\ , b‘ , bl are calculated using rational

fraction methods. When this expression is combined with an approximation valid
for mildly unstable conditions, the result is a method that provides accurate,
éfficient noniterative estimates of L. This method provides a simple method of
computing surface fluxes of momentum, heat, and moisture in numerical weather
prediction models that have a thin (4 2.5 —Joow) lower layer. The full solution

to the inverse problem will be given in a future report.
5. Conclusions

A  General Unified Similarily Theory {(GUST) unites the standard empirical
flux—profile relations for the unstable surface planetary boundary layer with

the predictions of free—convection theory. The basic relations consist of the



Weli-known '"REYPS' quartic equation for w1nd and a new cubic equation for
temperature. The positikve roots of .the quartic and cubic equation represent

the nondimensional wind shear ( Qm) and temperature gradient { CQh_ ),
respectively. - Although the use of the GUST relations appears computationally
inefficient compared,. forﬂexampie, to the standard Businger or Dyer fiux

. relations, computat'ionally simple rational fraction and'asymptotirc relations

' are developed that closely approximate the exact values of the GUST CQM (/L)
and ?h (Z/L) ‘For slightly' unstable regimes: CQW\ and C?‘n approximate
the standard '- ’i" and '- le‘ pomer profile expressions. As instability incteases
‘(-—2-/\_ 31D, ?m and CQ approach the Z-\/s power. law predicted by free-

convection theory.

One of'thé“primke uses of flux_—profile relations is in the solution of an
'inverse problem' that arises in nume_rical Weathet prediction models., The
inverse problenm cons:;L'sts -of the ‘determination' "o'f h"/L W :, E e* and the
surface fluxes of momentum and heat from the known values of U(h) AB e(h)
-—9(}) and %o | ,f‘ The surface fluxes of momentum and heat are given by —-/g[&
and- {a(_‘u. ) oThe solutlon for h/L requltes the 1terat10n of a nonllnear expression
contalnlng the factors F and Fy, Whlch 1nvolve the 1ntegrals of CQ (g)/g
‘and (P (g)/gfrom g 2 /L tog h/L,‘and also K L__ 3\”A9/6 U > s
the. bulk Richardson number. As is the case Wlth Ce ; and Czh , Fp:and Fy
can- be approx1mated by ratlonal fract1ons and asymptotlc expressions that are
no more computationally burdensome than‘ the- corre,sponding forms of the' Businger
and Dyer Fm and Fh. For the 11m1t1ng case of extreme 1nstab111ty, the quantities
'»h/L and 3‘«1[59/9 v: ‘drop out (h becomes an irrelevant factor) and
are replaced by L = L/z<> and ﬁB: S%OAQ/Q \)7". This simplification .
leads to a nonlinear equation whose solution' can be readily approximated by a

‘rational fraction.



APPENDIX: NOTATION

a = specific value of nl ; am,h = constants in asymptotic relations

b = constant in nondimensional temperature gradient (= neutral Prandtl number)

¢ = constant in nondimensional humidity gradient; C@m,h constants of integration;
Cp = drag coefficient; Cyg ,q = heat and moisture transfer coefficients; Cp =
specific heat of air at constant pressure

f = arbitrary function; qu = integrals involving momentum and temperature profiles

g = acceleration due to gravity; GUST = General Unified Similarity Theory

h = arbitrary height within the surface layer such that h>>z,.

In,h (ﬁlJ ) = integrals involved in the asymptotic expressions forkk m,h

M, h
j = iteration index; X - coordinate index

k = von Kirman's constant; Kp,h = eddy diffusion coefficients for momentum and heat

L = Obukhov length scale; degree of polynomial in the numerator of a rational
fraction; 1 = L/z0;£ = latent heat of vaporization

= degree of polynomial in the denominator of a rational fraction
N = number of points (N = L4M+l) that can be fit with a rational fraction

Qh,o = factors in the integrated forms of the flux-profile relations; q = specific
humidity; q =/zf% 5 9% = turbulent scaling specific humidity

- A
Rp = bulk Richardson number (= ghl&B/eUz), Rg = modified bulk Richardson number
(= z, Rg/bh); Rp, o = factors in the integrated forms of the flux-profile
relations
U = wind speed within the surface layer at height z or h; ux = “"friction" velocity
Xy = jth point on the x—axis
vy = jth value of f (xj)

z = arbitrary height; z, = roughness length (height)
(&) = Ky &S)/Kméﬁ) (= inverse Prandtl number)

7{— generic for"K% W 7rwn = constants multiplying z/L in profile relations
for wind and temperature



?= gEHEriC for,?—m_,h ; oZm'h - \(m)h E/L = _’\(M,h g

0= potential temperature; @o = O(%= Zo) 5 @ = reference or mean potential
temperature; a*= turbulent scaling temperature

f)= density of air

h.q = nondimensional "universal” gradients of wind speed, temperature, and
m,h,q L.
humidity

LV m,h = integrated forms of nondimensional gradients of wind and temperature
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